DocumentCode :
1242159
Title :
A neural network filter to detect small targets in high clutter backgrounds
Author :
Shirvaikar, Mukul V. ; Trivedi, Mohan M.
Author_Institution :
Comput. Vision & Robotics Res. Lab., Tennessee Univ., Knoxville, TN, USA
Volume :
6
Issue :
1
fYear :
1995
fDate :
1/1/1995 12:00:00 AM
Firstpage :
252
Lastpage :
257
Abstract :
The detection of objects in high-resolution aerial imagery has proven to be a difficult task. In the authors´ application, the amount of image clutter is extremely high. Under these conditions, detection based on low-level image cues tends to perform poorly. Neural network techniques have been proposed in object detection applications due to proven robust performance characteristics. A neural network filter was designed and trained to detect targets in thermal infrared images. The feature extraction stage was eliminated and raw gray levels were utilized as input to the network. Two fundamentally different approaches were used to design the training sets. In the first approach, actual image data were utilized for training. In the second case, a model-based approach was adopted to design the training set vectors. The training set consisted of object and background data. The neuron transfer function was modified to improve network convergence and speed and the backpropagation training algorithm was used to train the network. The neural network filter was tested extensively on real image data. Receiver operating characteristic (ROC) curves were determined in each case. The detection and false alarm rates were excellent for the neural network filters. Their overall performance was much superior to that of the size-matched contrast-box filter, especially in the images with higher amounts of visual clutter
Keywords :
backpropagation; clutter; filtering theory; image recognition; object detection; backpropagation training algorithm; detection rates; false alarm rates; high clutter backgrounds; high-resolution aerial imagery; low-level image cues; model-based approach; network convergence; neural network filter; neuron transfer function; object detection; raw gray levels; receiver operating characteristic curves; robust performance characteristics; size-matched contrast-box filter; small targets detection; thermal infrared images; visual clutter; Convergence; Feature extraction; Filters; Infrared detectors; Infrared imaging; Neural networks; Neurons; Object detection; Robustness; Transfer functions;
fLanguage :
English
Journal_Title :
Neural Networks, IEEE Transactions on
Publisher :
ieee
ISSN :
1045-9227
Type :
jour
DOI :
10.1109/72.363430
Filename :
363430
Link To Document :
بازگشت