Title :
Modal analysis for a bounded-wave EMP Simulator - part II: radiation leakage and mode suppression
Author :
Ahmed, Shahid ; Raju, Daniel ; Chaturvedi, Shashank ; Jha, Ratneshwar
Author_Institution :
Inst. of Electron., Queen´´s Univ., Belfast, UK
Abstract :
Radiation leakage from a high-power bounded-wave electromagnetic pulse simulator can cause severe electromagnetic interference (EMI) with surrounding equipment. In Part I, we analyzed the electromagnetic mode structure inside a simulator. In Part II, we examine the relative contribution of these modes to radiation leakage. We have calculated the temporal cross correlation between the electromagnetic modes inside the simulator and the temporal waveform of the forward-radiated far field. The TM1 and TM2 modes show strong cross correlation over a range of switching times. For the TEM mode, on the other hand, this holds true only for larger values of the switching time. Hence, for a given mode amplitude, higher order TM modes tend to produce more leakage than the TEM mode. However, since TEM is far stronger than TM throughout the simulator, it may still contribute more in absolute terms. Increasing the angle between simulator plates excites more higher order modes and increases their strength, thereby enhancing leakage. Pulse compression with respect to time increases the relative strength of higher order modes. Placing a spatial mode filter inside the simulator significantly reduces TM1 without modifying the desired TEM mode. However, TM2 remains largely unchanged. The reduction in TM1 depends sensitively upon the parameters of the filter. These observations illustrate a new method of understanding and improving simulator design from the point of view of EMI.
Keywords :
electromagnetic interference; electromagnetic pulse; interference suppression; modal analysis; spatial filters; bounded-wave EMP simulator; electromagnetic interference; electromagnetic pulse; finite-difference time domain method; modal analysis; mode suppression; pulse compression; radiation leakage; spatial mode filter; transverse electromagnetic; Analytical models; EMP radiation effects; Electromagnetic analysis; Electromagnetic fields; Electromagnetic interference; Electromagnetic radiation; Electromagnetic scattering; Filters; Modal analysis; Pulse compression methods;
Journal_Title :
Electromagnetic Compatibility, IEEE Transactions on
DOI :
10.1109/TEMC.2004.842101