DocumentCode :
1244166
Title :
Cantilever Dynamic Vibration Absorber for Reducing Optical Disk Drive Vibration
Author :
Lim, Seungho ; Kim, Kyungtae ; Cho, Ungrae ; Park, No-Cheol ; Park, Young-Pil ; Park, Kyoung-Su ; Soh, Wook-Young
Author_Institution :
Dept. of Mech. Eng., Yonsei Univ., Seoul
Volume :
45
Issue :
5
fYear :
2009
fDate :
5/1/2009 12:00:00 AM
Firstpage :
2198
Lastpage :
2201
Abstract :
This research explores the design of a dynamic vibration absorber (DVA) using a cantilever beam with tip mass. Compared to a conventional DVA using a rubber bobbin, the proposed DVA isolates vibrations more effectively due to the low damping properties of its structure, which are the principal reason for its excellent anti-vibration performance near the anti-resonance frequency. This low damping decreases the harmonic response at the rotational frequency of the disk. To design the proposed DVA, the dynamic characteristics of the optical disk drive were represented with lumped parameter and finite element models. The dimensions of the beam were tuned to reduce the vibration in multiple axes based on this model. Tolerance analysis were performed so the drive would be robust against normal dimension variance due to the manufacturing process, and the variation in the dynamic characteristics with respect to the pickup position was investigated. The anti-vibration performance of the DVA was also measured experimentally.
Keywords :
beams (structures); cantilevers; damping; optical disc storage; tolerance analysis; vibrations; antiresonance frequency; cantilever beam; damping; dynamic vibration absorber; finite element models; optical disk drive; rubber bobbin; tolerance analysis; Dynamic vibration absorber; finite-element model; lumped parameter model; optical disk drive;
fLanguage :
English
Journal_Title :
Magnetics, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9464
Type :
jour
DOI :
10.1109/TMAG.2009.2016144
Filename :
4816018
Link To Document :
بازگشت