DocumentCode :
1244582
Title :
Laser-activated shape memory polymer microactuator for thrombus removal following ischemic stroke: preliminary in vitro analysis
Author :
Small, Ward, IV ; Metzger, Melodie F. ; Wilson, Thomas S. ; Maitland, Duncan J.
Author_Institution :
Lawrence Livermore Nat. Lab., CA, USA
Volume :
11
Issue :
4
fYear :
2005
Firstpage :
892
Lastpage :
901
Abstract :
Due to the narrow (3-h) treatment window for effective use of the thrombolytic drug recombinant tissue-type plasminogen activator (rt-PA), there is a need to develop alternative treatments for ischemic stroke. We are developing an intravascular device for mechanical thrombus removal using shape memory polymer (SMP). We propose to deliver the SMP microactuator in its secondary straight rod form (length=4 cm, diameter=350 μm) through a catheter distal to the vascular occlusion. The microactuator, which is mounted on the end of an optical fiber, is then transformed into its primary corkscrew shape by laser heating (diode laser, λ=800 nm) above its soft-phase glass transition temperature (Tgs=55°C). Once deployed, the microactuator is retracted, and the captured thrombus is removed to restore blood flow. The SMP is doped with indocyanine green (ICG) dye to increase absorption of the laser light. Successful deployment of the microactuator depends on the optical properties of the ICG-doped SMP, as well as the optical coupling efficiency of the interface between the optical fiber and the SMP. Spectrophotometry, thermal imaging, and computer simulation aided the initial design effort and continue to be useful tools for optimization of the dye concentration and laser power. Thermomechanical testing was performed to characterize the elastic modulus of the SMP. We have demonstrated laser activation of the SMP microactuator in air at room temperature, suggesting this concept is a promising therapeutic alternative to rt-PA.
Keywords :
biomedical equipment; diseases; laser applications in medicine; microactuators; shape memory effects; elastic modulus; indocyanine green dye; ischemic stroke; optical coupling efficiency; plasminogen activator; shape memory polymer microactuator; soft-phase glass transition temperature; spectrophotometry; thermal imaging; thermomechanical testing; thrombolytic drug recombinant tissue; thrombus removal; Catheters; Drugs; Fiber lasers; In vitro; Laser transitions; Microactuators; Optical fibers; Polymers; Shape; Temperature; Diode laser; indocyanine green (ICG); ischemic stroke; shape memory polymer (SMP);
fLanguage :
English
Journal_Title :
Selected Topics in Quantum Electronics, IEEE Journal of
Publisher :
ieee
ISSN :
1077-260X
Type :
jour
DOI :
10.1109/JSTQE.2005.857748
Filename :
1545991
Link To Document :
بازگشت