Title :
Parametric study of modal gain and threshold power density in electrically pumped single-layer organic optical amplifier and laser diode structures
Author :
Pflumm, Christof ; Karnutsch, Christian ; Gerken, Martina ; Lemmer, Uli
Author_Institution :
Light Technol. Inst., Univ. of Karlsruhe, Germany
fDate :
3/1/2005 12:00:00 AM
Abstract :
In this paper, a model to calculate the modal gain in organic optical amplifiers and the laser threshold power density in organic laser diode structures is presented. We consider a single-layer design to investigate the dependence of the modal gain and threshold power density on electron and hole mobility, injection barriers, the thickness of the active layer, as well as exciton dissociation at the injecting contacts. A figure of merit is introduced to quantify the influence of absorption by polarons in optical amplifiers. We show that equal charge carrier mobilities are of crucial importance to achieve appreciable gain on the order of 1/cm at a power density of P= 50 kW/cm2 for the considered poly[2-methoxy, 5-(2´-ethyl-hexyloxy)-1,4-phenylene vinylene] (MEH-PPV)-like model material. Increasing the injection barriers to φb≈ 0.3 eV decreases the gain marginally but is beneficial in terms of polaron absorption. Regarding modal gain, there is an optimum thickness for the active layer of d≈ 200 nm, if different devices are compared on the basis of equal power density. We derive power laws for the dependence of modal gain on mobility and power density, which can serve as guidelines for future device design considerations. We determine the maximum allowed polaron absorption cross section σabs relative to the cross section σstim for stimulated emission that may not be exceeded to achieve positive net gain necessary for optical amplification. For the most favorable parameters, σabs has to be at least 20 times smaller than σstim. The dependence of the laser threshold power density on all of the above-mentioned parameters is investigated. We show that, in the optimum case considered, the power density necessary for lasing is 40 times higher than the highest value reported in the literature.
Keywords :
carrier mobility; electron beam pumping; excitons; organic semiconductors; polarons; semiconductor device models; semiconductor optical amplifiers; stimulated emission; 0.3 eV; 200 nm; MEH-PPV-like model material; active layer thickness; charge carrier mobilities; electrically pumped optical amplifier; electron mobility; exciton dissociation; hole mobility; injecting contacts; injection barriers; modal gain; optical amplification; organic laser diode; organic optical amplifier; parametric study; poralon absorption; power laws; single-layer laser design; single-layer optical amplifier; stimulated emission; threshold power density; Absorption; Diode lasers; Laser excitation; Nonlinear optics; Optical amplifiers; Optical pumping; Parametric study; Power amplifiers; Semiconductor optical amplifiers; Stimulated emission; Electrical pumping; laser threshold; modal gain; modeling; organic injection laser; organic laser; organic laser diode; organic light-emitting diode (OLED); organic optical amplifier; polaron absorption; simulation; threshold power density;
Journal_Title :
Quantum Electronics, IEEE Journal of
DOI :
10.1109/JQE.2004.841499