Title :
Congestion control for high performance, stability, and fairness in general networks
Author :
Paganini, Fernando ; Wang, Zhikui ; Doyle, John C. ; Low, Steven H.
Author_Institution :
Dept. of Electr. Eng., Univ. of California, Los Angeles, CA, USA
Abstract :
This paper is aimed at designing a congestion control system that scales gracefully with network capacity, providing high utilization, low queueing delay, dynamic stability, and fairness among users. The focus is on developing decentralized control laws at end-systems and routers at the level of fluid-flow models, that can provably satisfy such properties in arbitrary networks, and subsequently approximate these features through practical packet-level implementations. Two families of control laws are developed. The first "dual" control law is able to achieve the first three objectives for arbitrary networks and delays, but is forced to constrain the resource allocation policy. We subsequently develop a "primal-dual" law that overcomes this limitation and allows sources to match their steady-state preferences at a slower time-scale, provided a bound on round-trip-times is known. We develop two packet-level implementations of this protocol, using 1) ECN marking, and 2) queueing delay, as means of communicating the congestion measure from links to sources. We demonstrate using ns-2 simulations the stability of the protocol and its equilibrium features in terms of utilization, queueing and fairness, under a variety of scaling parameters.
Keywords :
Internet; decentralised control; delays; protocols; queueing theory; resource allocation; stability; telecommunication congestion control; telecommunication links; telecommunication network routing; Internet; arbitrary network; congestion control system; dual control law; queueing delay; resource allocation; Algorithm design and analysis; Control systems; Delay; Fluid dynamics; IP networks; Intelligent networks; Mathematical model; Protocols; Resource management; Stability; Active queue management; Internet congestion control; TCP; fairness; scalable stability; utility functions;
Journal_Title :
Networking, IEEE/ACM Transactions on
DOI :
10.1109/TNET.2004.842216