Title :
Kalman Filter-Trained Recurrent Neural Equalizers for Time-Varying Channels
Abstract :
Recurrent neural networks have been successfully applied to communications channel equalization because of their modeling capability for nonlinear dynamic systems. Major problems of gradient-descent learning techniques commonly employed to train recurrent neural networks are slow convergence rates and long training sequences required for satisfactory performance. This paper presents decision-feedback equalizers using a recurrent neural network trained with Kalman-filtering algorithms. The main features of the proposed recurrent neural equalizers, using the extended Kalman filter and the unscented Kalman filter, are fast convergence and good performance using relatively short training symbols. Experimental results for various time-varying channels are presented to evaluate the performance of the proposed approaches over a conventional recurrent neural equalizer.
Journal_Title :
Communications, IEEE Transactions on
DOI :
10.1109/TCOMM.2004.841963