• DocumentCode
    1247520
  • Title

    A fast time domain integral equation based scheme for analyzing scattering from dispersive objects

  • Author

    Kobidze, Gregory ; Gao, Jun ; Shanker, Balasubramaniam ; Michielssen, Eric

  • Author_Institution
    Electr. & Comput. Eng. Dept., Michigan State Univ., East Lansing, MI, USA
  • Volume
    53
  • Issue
    3
  • fYear
    2005
  • fDate
    3/1/2005 12:00:00 AM
  • Firstpage
    1215
  • Lastpage
    1226
  • Abstract
    A fast integral equation-based scheme for analyzing transient scattering from inhomogeneous dispersive bodies is presented. A time domain integral equation in terms of the electric flux inside the body is constructed by invoking the volume equivalence principle, i.e., by equating the sum of the incident electric field and that radiated by equivalent volume polarization currents to the total electric field. The proposed algorithm for solving this time domain integral equation incorporates a recursive convolution scheme that updates the polarization current from knowledge of the electric flux. To reduce the computational cost and memory requirement of the resulting marching-on-in-time scheme, it is augmented with the plane wave time domain algorithm. Numerical results that validate the proposed approach and demonstrate its accuracy are presented.
  • Keywords
    dispersive media; electric field integral equations; electromagnetic wave scattering; inhomogeneous media; recursive functions; time-domain analysis; Electromagnetic transients; electric flux; equivalent volume polarization current; fast integral equation; inhomogeneous dispersive bodies; marching-on-in-time scheme; recursive convolution scheme; time domain integral equation; transient scattering; volume equivalence principle; Convolution; Dispersion; Electromagnetic scattering; Electromagnetic transients; Finite difference methods; Integral equations; Nonuniform electric fields; Polarization; Time domain analysis; Transient analysis; Convolution; Debye; Lorentz; dispersive; multiple poles; recursive; scattering; transient;
  • fLanguage
    English
  • Journal_Title
    Antennas and Propagation, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0018-926X
  • Type

    jour

  • DOI
    10.1109/TAP.2004.841295
  • Filename
    1406255