Author_Institution :
Sch. of Electr. & Comput. Eng., Univ. of Oklahoma, Norman, OK, USA
Abstract :
In many applications, nodes in a network desire not only a consensus, but an optimal one. To date, a family of subgradient algorithms have been proposed to solve this problem under general convexity assumptions. This technical note shows that, for the scalar case and by assuming a bit more, novel non-gradient-based algorithms with appealing features can be constructed. Specifically, we develop Pairwise Equalizing (PE) and Pairwise Bisectioning (PB), two gossip algorithms that solve unconstrained, separable, convex consensus optimization problems over undirected networks with time-varying topologies, where each local function is strictly convex, continuously differentiable, and has a minimizer. We show that PE and PB are easy to implement, bypass limitations of the subgradient algorithms, and produce switched, nonlinear, networked dynamical systems that admit a common Lyapunov function and asymptotically converge. Moreover, PE generalizes the well-known Pairwise Averaging and Randomized Gossip Algorithm, while PB relaxes a requirement of PE, allowing nodes to never share their local functions.
Keywords :
convex programming; gradient methods; network theory (graphs); Gossip algorithms; Lyapunov function; PB; PE; convex consensus optimization; convexity assumptions; nongradient based algorithms; pairwise bisectioning; pairwise equalizing; subgradient algorithms; time-varying topologies; Algorithm design and analysis; Convergence; Convex functions; Heuristic algorithms; Lyapunov methods; Spread spectrum communication; Distributed consensus; distributed convex optimization; gossip algorithms; networked dynamical systems;