DocumentCode :
1247909
Title :
Uniformly Best Biased Estimators in Non-Bayesian Parameter Estimation
Author :
Todros, Koby ; Tabrikian, Joseph
Author_Institution :
Dept. of Electr. & Comput. Eng., Ben-Gurion Univ. of the Negev, Beer-Sheva, Israel
Volume :
57
Issue :
11
fYear :
2011
Firstpage :
7635
Lastpage :
7647
Abstract :
In this paper, a new structured approach for obtaining uniformly best non-Bayesian biased estimators, which attain minimum-mean-square-error performance at any point in the parameter space, is established. We show that if a uniformly best biased (UBB) estimator exists, then it is unique, and it can be directly obtained from any locally best biased (LBB) estimator. A necessary and sufficient condition for the existence of a UBB estimator is derived. It is shown that if there exists an optimal bias, such that this condition is satisfied, then it is unique, and its closed-form expression is obtained. The proposed approach is exemplified in two nonlinear estimation problems, where uniformly minimum-variance-unbiased estimators do not exist. In the considered examples, we show that the UBB estimators outperform the corresponding maximum-likelihood estimators in the MSE sense.
Keywords :
Bayes methods; maximum likelihood estimation; mean square error methods; nonlinear estimation; signal processing; LBB estimator; MSE; UBB estimator; maximum-likelihood estimators; minimum-mean-square-error performance; nonBayesian parameter estimation; signal processing; uniform best biased estimators; Bayesian methods; Closed-form solution; Density measurement; Maximum likelihood estimation; Signal to noise ratio; Locally best biased (LBB) estimators; minimum-mean-square-error (MMSE); non-Bayesian theory; parameter estimation; uniformly best biased (UBB) estimators;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/TIT.2011.2159958
Filename :
5893945
Link To Document :
بازگشت