DocumentCode :
1248053
Title :
The Degree of Balanced Elementary Symmetric Boolean Functions of {{\\bf 4k}+{\\bf 3}} Variables
Author :
Gao, Guang-Pu ; Liu, Wen-Fen ; Zhang, Xi-Yong
Author_Institution :
Dept. of Appl. Math., Zhengzhou Inf. Sci. & Technol. Inst., Zhengzhou, China
Volume :
57
Issue :
7
fYear :
2011
fDate :
7/1/2011 12:00:00 AM
Firstpage :
4822
Lastpage :
4825
Abstract :
In this paper, we consider the conjecture that σ2t+1l-1,2t are the only nonlinear balanced elementary symmetric Boolean functions where t and l are positive integers. We prove if n=2t+1l-1, l odd and 2t+1nmid d, σn,d is balanced if and only if d=2k, 1 ≤ kt. Our results verify most cases of the conjecture for n ≡ 3 (mod 4) .
Keywords :
Boolean functions; algebraic degree; balanced elementary symmetric Boolean function; positive integer; Boolean functions; Cryptography; Equations; Hamming weight; Information science; Measurement; Algebraic degree; Boolean functions; Lucas´ theorem; balancedness; elementary symmetric;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/TIT.2011.2145910
Filename :
5895065
Link To Document :
بازگشت