• DocumentCode
    1248696
  • Title

    Inversion for Time-Evolving Sound-Speed Field in a Shallow Ocean by Ensemble Kalman Filtering

  • Author

    Carrière, Olivier ; Hermand, Jean-Pierre ; Candy, James V.

  • Author_Institution
    Environ. Hydroacoustics Lab., Univ. libre de Bruxelles (U.L.B.), Brussels, Belgium
  • Volume
    34
  • Issue
    4
  • fYear
    2009
  • Firstpage
    586
  • Lastpage
    602
  • Abstract
    In the context of the recent Maritime Rapid Environmental Assessment/Blue Planet 2007 sea trial (MREA/BP07), this paper presents a range-resolving tomography method based on ensemble Kalman filtering of full-field acoustic measurements, dedicated to the monitoring of environmental parameters in coastal waters. The inverse problem is formulated in a state-space form wherein the time-varying sound-speed field (SSF) is assumed to follow a random walk with known statistics and the acoustic measurements are a nonlinear function of the SSF and the bottom properties. The state-space form enables a straightforward implementation of a nonlinear Kalman filter, leading to a data assimilation problem. Surface measurements augment the measurement vector to constrain the range-dependent structure of the SSF. Realistic scenarios of vertical slice shallow-water tomography experiments are simulated with an oceanic model, based on the MREA/BP07 experiment. Prior geoacoustic inversion on the same location gives the bottom acoustic properties that are input to the propagation model. Simulation results show that the proposed scheme enables the continuous tracking of the range-dependent SSF parameters and their associated uncertainties assimilating new measurements each hour. It is shown that ensemble methods are required to properly manage the nonlinearity of the model. The problem of the sensitivity to the vertical array (VA) configuration is also addressed.
  • Keywords
    Kalman filters; acoustic wave velocity measurement; oceanographic techniques; underwater sound; Blue Planet 2007; Italy; MREA/BP07 sea trial; Maritime Rapid Environmental Assessment; Mediterranean Sea; South Elba area; acoustic properties; data assimilation; ensemble Kalman filtering; inverse problem; nonlinear Kalman filter; oceanic model; range-resolving tomography method; shallow-water tomography experiments; sound-speed field; vertical array configuration; Acoustic measurements; Condition monitoring; Extraterrestrial measurements; Filtering; Inverse problems; Kalman filters; Oceans; Planets; Sea measurements; Tomography; Coupled normal modes; empirical orthogonal function; ensemble Kalman filter (EnKF); model-based processor; range dependent; sound-speed estimation;
  • fLanguage
    English
  • Journal_Title
    Oceanic Engineering, IEEE Journal of
  • Publisher
    ieee
  • ISSN
    0364-9059
  • Type

    jour

  • DOI
    10.1109/JOE.2009.2033954
  • Filename
    5308754