DocumentCode :
124966
Title :
Integrating Motivated Learning and k-Winner-Take-All to Coordinate Multi-agent Reinforcement Learning
Author :
Teck-Hou Teng ; Ah-Hwee Tan ; Starzyk, Janusz A. ; Yuan-Sin Tan ; Loo-Nin Teow
Volume :
3
fYear :
2014
fDate :
11-14 Aug. 2014
Firstpage :
190
Lastpage :
197
Abstract :
This work addresses the coordination issue in distributed optimization problem (DOP) where multiple distinct and time-critical tasks are performed to satisfy a global objective function. The performance of these tasks has to be coordinated due to the sharing of consumable resources and the dependency on non-consumable resources. Knowing that it can be sub-optimal to predefine the performance of the tasks for large DOPs, the multi-agent reinforcement learning (MARL) framework is adopted wherein an agent is used to learn the performance of each distinct task using reinforcement learning. To coordinate MARL, we propose a novel coordination strategy integrating Motivated Learning (ML) and the k-Winner-Take-All (k-WTA) approach. The priority of the agents to the shared resources is determined using Motivated Learning in real time. Due to the finite amount of the shared resources, the k-WTA approach is used to allow for the maximum number of the most urgent tasks to execute. Agents performing tasks dependent on resources produced by other agents are coordinated using domain knowledge. Comparing our proposed contribution to the existing approaches, results from our experiments based on a 16-task DOP and a 68-task DOP show our proposed approach to be most effective in coordinating multi-agent reinforcement learning.
Keywords :
learning (artificial intelligence); multi-agent systems; optimisation; resource allocation; 16-task DOP; 68-task DOP; MARL framework; consumable resource sharing; distributed optimization problem; global objective function; k-WTA approach; k-winner-take-all approach; motivated learning; multiagent reinforcement learning framework; nonconsumable resource dependency; time-critical tasks; Educational institutions; Games; Learning (artificial intelligence); Linear programming; Optimization; Pain; Resource management; Motivated Learning; Multi-Agent System; Real-Time Strategy Game; Reinforcement Learning; k-Winner-Take-All;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Web Intelligence (WI) and Intelligent Agent Technologies (IAT), 2014 IEEE/WIC/ACM International Joint Conferences on
Conference_Location :
Warsaw
Type :
conf
DOI :
10.1109/WI-IAT.2014.167
Filename :
6928185
Link To Document :
بازگشت