DocumentCode :
1253321
Title :
A generalization of algebraic-geometry codes
Author :
Xing, Chaoping ; Niederreiter, Harald ; Lam, Kwok Yan
Author_Institution :
Dept. of Math., Nat. Univ. of Singapore, Singapore
Volume :
45
Issue :
7
fYear :
1999
fDate :
11/1/1999 12:00:00 AM
Firstpage :
2498
Lastpage :
2501
Abstract :
A generalization of algebraic-geometry codes based on function fields over finite fields with many places of small degree is presented. It turns out that many good linear codes can be obtained from these generalized algebraic-geometry codes. In particular, we calculate some examples of q-ary linear codes for q=2,3, 5. These examples show that many best possible linear codes can be found from our construction
Keywords :
Goppa codes; algebraic geometric codes; concatenated codes; linear codes; Goppa codes; concatenated codes; finite fields; function fields; generalized algebraic-geometry codes; inner code; outer code; q-ary linear codes; small degree places; Computer errors; Error correction; Error correction codes; Interference; Linear code; Mathematics; Quantum computing; Quantum entanglement; Quantum mechanics; Rain;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/18.796390
Filename :
796390
Link To Document :
بازگشت