DocumentCode :
1253360
Title :
Gray isometries for finite chain rings and a nonlinear ternary (36, 312, 15) code
Author :
Greferath, Markus ; Schmidt, Stefan E.
Author_Institution :
Dept. of Math., Duisburg Univ., Germany
Volume :
45
Issue :
7
fYear :
1999
fDate :
11/1/1999 12:00:00 AM
Firstpage :
2522
Lastpage :
2524
Abstract :
Using tensor product constructions for the first-order generalized Reed-Muller codes, we extend the well-established concept of the Gray isometry between (Z4, δL) and (Z2 2, δH) to the context of finite chain rings. Our approach covers previous results by Carlet (see ibid., vol.44, p.1543-7, 1998), Constantinescu (see Probl. Pered. Inform., vol.33, no.3, p.22-8, 1997 and Ph.D. dissertation, Tech. Univ. Munchen, Munchen, Germany, 1995), Nechaev et al. (see Proc. IEEE Int. Symp. Information Theory and its Applications, p.31-4, 1996) and overlaps with Heise et al. (see Proc. ACCT 6, Pskov, Russia, p.123-9, 1998) and Honold et al. (see Proc. ACCT 6, Pskov, Russia, p.135-41, 1998). Applying the Gray isometry on Z9 we obtain a previously unknown nonlinear ternary (36, 312, 15) code
Keywords :
Golay codes; Reed-Muller codes; nonlinear codes; tensors; Golay code; Gray isometries; finite chain rings; first-order generalized Reed-Muller codes; nonlinear ternary code; tensor product constructions; Binary codes; Mathematics; Modules (abstract algebra); Tensile stress;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/18.796395
Filename :
796395
Link To Document :
بازگشت