Title :
Memory-universal prediction of stationary random processes
Author :
Modha, Dharmendra S. ; Masry, Elias
Author_Institution :
net.Mining, IBM Almaden Res. Center, San Jose, CA, USA
fDate :
1/1/1998 12:00:00 AM
Abstract :
We consider the problem of one-step-ahead prediction of a real-valued, stationary, strongly mixing random process (Xi)i=-∞∞. The best mean-square predictor of X0 is its conditional mean given the entire infinite past (Xi)i=-∞-1. Given a sequence of observations X1, X2, XN, we propose estimators for the conditional mean based on sequences of parametric models of increasing memory and of increasing dimension, for example, neural networks and Legendre polynomials. The proposed estimators select both the model memory and the model dimension, in a data-driven fashion, by minimizing certain complexity regularized least squares criteria. When the underlying predictor function has a finite memory, we establish that the proposed estimators are memory-universal: the proposed estimators, which do not know the true memory, deliver the same statistical performance (rates of integrated mean-squared error) as that delivered by estimators that know the true memory. Furthermore, when the underlying predictor function does not have a finite memory, we establish that the estimator based on Legendre polynomials is consistent
Keywords :
estimation theory; least mean squares methods; least squares approximations; neural nets; parameter estimation; polynomials; prediction theory; random processes; statistical analysis; Legendre polynomial; complexity regularized least squares criteria; conditional mean; finite memory; increasing dimension; increasing memory; integrated mean-squared error rate; mean-square predictor; memory-universal prediction; model dimension; model memory; neural networks; observations; one-step-ahead prediction; parametric models; predictor function; real-valued process; sequences; stationary random processes; statistical performance; statistical prediction; strongly mixing random process; Convergence; Least squares approximation; Markov processes; Neural networks; Parametric statistics; Polynomials; Predictive models; Pricing; Random processes; Signal processing;
Journal_Title :
Information Theory, IEEE Transactions on