DocumentCode :
1254754
Title :
Effective identification of induction motor parameters based on fewer measurements
Author :
Huang, K.S. ; Wu, Q.H. ; Turner, D.R.
Author_Institution :
Dept. of Electron. & Inf. Eng., Guangdong Univ. of Technol., Guangzhou, China
Volume :
17
Issue :
1
fYear :
2002
fDate :
3/1/2002 12:00:00 AM
Firstpage :
55
Lastpage :
60
Abstract :
This paper applies genetic algorithms (GAs) to the problem of parameter identification for field orientation control (FOC) induction motors. Kron´s two-axis dynamic model in per-unit system is given, and the model´s parameters are estimated by a GA using the motor´s dynamic response to a direct on line start. Results with different levels of measurement noise are presented for the model both in the per-unit system and in actual values. For comparison, the results of a simple random search (SRS) method under the same condition are also given. The results show that the parameter identification accuracy, the convergence speed and the practicality of the algorithm have been improved significantly by use of the model in the per-unit system. The results also show that fewer measurements are required to identify the induction motor parameters accurately
Keywords :
dynamic response; genetic algorithms; induction motors; machine vector control; parameter estimation; starting; Kron´s two-axis dynamic model; convergence speed; direct on line start; field orientation control; genetic algorithms; induction motors; measurement noise; motor dynamic response; parameter estimation; parameter identification; per-unit system; simple random search method; Circuit testing; Degradation; Genetic algorithms; Inductance; Induction motors; Noise measurement; Parameter estimation; Position control; Q measurement; Rotors;
fLanguage :
English
Journal_Title :
Energy Conversion, IEEE Transactions on
Publisher :
ieee
ISSN :
0885-8969
Type :
jour
DOI :
10.1109/60.986437
Filename :
986437
Link To Document :
بازگشت