DocumentCode :
125510
Title :
Scalable Parallel I/O on a Blue Gene/Q Supercomputer Using Compression, Topology-Aware Data Aggregation, and Subfiling
Author :
Huy Bui ; Finkel, Hal ; Vishwanath, Venkatram ; Habib, Salman ; Heitmann, Katrin ; Leigh, J. ; Papka, Michael ; Harms, Kevin
Author_Institution :
Electron. Visualization Lab., Univ. of Illinois at Chicago, Chicago, IL, USA
fYear :
2014
fDate :
12-14 Feb. 2014
Firstpage :
107
Lastpage :
111
Abstract :
In this paper, we propose an approach to improving the I/O performance of an IBM Blue Gene/Q supercomputing system using a novel framework that can be integrated into high performance applications. We take advantage of the system´s tremendous computing resources and high interconnection bandwidth among compute nodes to efficiently exploit I/O bandwidth. This approach focuses on lossless data compression, topology-aware data movement, and subfiling. The efficacy of this solution is demonstrated using microbenchmarks and an application-level benchmark.
Keywords :
data compression; parallel machines; parallel processing; topology; application-level benchmark; blue gene/Q supercomputer; lossless data compression; microbenchmarks; scalable parallel I/O performance; topology-aware data aggregation; topology-aware data movement; Bandwidth; Benchmark testing; Data compression; Libraries; Network topology; Supercomputers; Writing; compression; subfiling; topology-aware data movement;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Parallel, Distributed and Network-Based Processing (PDP), 2014 22nd Euromicro International Conference on
Conference_Location :
Torino
ISSN :
1066-6192
Type :
conf
DOI :
10.1109/PDP.2014.60
Filename :
6787260
Link To Document :
بازگشت