Title :
Semisupervised Band Clustering for Dimensionality Reduction of Hyperspectral Imagery
Author :
Su, Hongjun ; Yang, He ; Du, Qian ; Sheng, Yehua
Author_Institution :
Key Lab. of Virtual Geographic Environ., Nanjing Normal Univ., Nanjing, China
Abstract :
Band clustering is applied to dimensionality reduction of hyperspectral imagery. Different from unsupervised clustering using all the pixels or supervised clustering requiring labeled pixels, the proposed semisupervised band clustering needs class spectral signatures only. After clustering, a cluster selection step is applied to select clusters to be used in the following data analysis. Initial conditions and distance metrics are also investigated to improve the clustering performance. The experimental results show that the proposed algorithm can outperform other existing methods with lower computational cost.
Keywords :
geophysical image processing; pattern clustering; class spectral signature; cluster selection step; clustering performance; data analysis; dimensionality reduction; distance metrics; hyperspectral imagery; semisupervised band clustering; Accuracy; Clustering algorithms; Hyperspectral imaging; Measurement; Pixel; $k$-means clustering; Band clustering; dimensionality reduction; hyperspectral imagery;
Journal_Title :
Geoscience and Remote Sensing Letters, IEEE
DOI :
10.1109/LGRS.2011.2158185