DocumentCode :
1256229
Title :
Semisupervised Band Clustering for Dimensionality Reduction of Hyperspectral Imagery
Author :
Su, Hongjun ; Yang, He ; Du, Qian ; Sheng, Yehua
Author_Institution :
Key Lab. of Virtual Geographic Environ., Nanjing Normal Univ., Nanjing, China
Volume :
8
Issue :
6
fYear :
2011
Firstpage :
1135
Lastpage :
1139
Abstract :
Band clustering is applied to dimensionality reduction of hyperspectral imagery. Different from unsupervised clustering using all the pixels or supervised clustering requiring labeled pixels, the proposed semisupervised band clustering needs class spectral signatures only. After clustering, a cluster selection step is applied to select clusters to be used in the following data analysis. Initial conditions and distance metrics are also investigated to improve the clustering performance. The experimental results show that the proposed algorithm can outperform other existing methods with lower computational cost.
Keywords :
geophysical image processing; pattern clustering; class spectral signature; cluster selection step; clustering performance; data analysis; dimensionality reduction; distance metrics; hyperspectral imagery; semisupervised band clustering; Accuracy; Clustering algorithms; Hyperspectral imaging; Measurement; Pixel; $k$-means clustering; Band clustering; dimensionality reduction; hyperspectral imagery;
fLanguage :
English
Journal_Title :
Geoscience and Remote Sensing Letters, IEEE
Publisher :
ieee
ISSN :
1545-598X
Type :
jour
DOI :
10.1109/LGRS.2011.2158185
Filename :
5928384
Link To Document :
بازگشت