DocumentCode :
1257467
Title :
System Identification and Low-Order Optimal Control of Intersample Behavior in ILC
Author :
Oomen, Tom ; van de Wijdeven, J. ; Bosgra, O.H.
Author_Institution :
Dept. of Mech. Eng., Eindhoven Univ. of Technol., Eindhoven, Netherlands
Volume :
56
Issue :
11
fYear :
2011
Firstpage :
2734
Lastpage :
2739
Abstract :
Although iterative learning control (ILC) algorithms enable performance improvement for batch repetitive systems using limited system knowledge, at least an approximate model is essential. The aim of the present technical note is to develop an ILC framework for sampled-data systems, i.e., by incorporating the intersample response. Hereto, a novel parametric system identification procedure and a low-order optimal ILC controller synthesis procedure are presented that both incorporate the intersample behavior in a multirate framework. The results include i) improved computational properties compared to prior optimization-based ILC algorithms, and ii) improved performance of sampled-data systems compared to common discrete time ILC. These results are confirmed in a simulation example.
Keywords :
control system synthesis; learning systems; optimal control; parameter estimation; sampled data systems; self-adjusting systems; batch repetitive system; intersample behavior; intersample response; iterative learning control algorithm; low-order optimal ILC controller synthesis; multirate framework; parametric system identification procedure; sampled data system; Computational modeling; Data models; Equations; Mathematical model; Numerical models; Time domain analysis; Time frequency analysis; Iterative learning control (ILC);
fLanguage :
English
Journal_Title :
Automatic Control, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9286
Type :
jour
DOI :
10.1109/TAC.2011.2160596
Filename :
5929539
Link To Document :
بازگشت