DocumentCode :
1258215
Title :
Consistent Nonparametric Regression for Functional Data Under the Stone–Besicovitch Conditions
Author :
Forzani, Liliana ; Fraiman, Ricardo ; Llop, Pamela
Author_Institution :
Fac. de Ing. Quim. & Inst. de Mat. Aplic. del Litoral, Univ. Nac. del Litoral, Santa Fe, Argentina
Volume :
58
Issue :
11
fYear :
2012
Firstpage :
6697
Lastpage :
6708
Abstract :
In this paper, we address the problem of nonparametric regression estimation in the infinite-dimensional setting. We start by extending the Stone´s seminal result to the case of metric spaces when the probability measure of the explanatory variables is tight. Then, under slight variations on the hypotheses, we state and prove the theorem for general metric measure spaces. From this result, we derive the mean square consistency of the k-NN and kernel estimators if the regression function is bounded and the Besicovitch condition holds. We also prove that, for the uniform kernel estimate, the Besicovitch condition is also necessary in order to attain L1 consistency for almost every x.
Keywords :
estimation theory; pattern classification; probability; regression analysis; Stone-Besicovitch conditions; consistent nonparametric regression; functional data; general metric measure spaces; k-NN estimator; kernel estimator; mean square consistency; probability measure; uniform kernel estimate; Context; Convergence; Extraterrestrial measurements; Hilbert space; Kernel; Random variables; Functional data; nonparametric regression; separable metric spaces;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/TIT.2012.2209628
Filename :
6259857
Link To Document :
بازگشت