DocumentCode :
1258994
Title :
Stable inversion of continuous-time nonlinear systems by finite-difference methods
Author :
Taylor, David G. ; Li, Song
Author_Institution :
Sch. of Electr. & Comput. Eng., Georgia Inst. of Technol., Atlanta, GA, USA
Volume :
47
Issue :
3
fYear :
2002
fDate :
3/1/2002 12:00:00 AM
Firstpage :
537
Lastpage :
542
Abstract :
Introduces finite-difference methods for stable inversion of continuous-time nonlinear systems. A relationship between the new finite-difference methods and the existing Picard methods is established. A damped Newton finite-difference method is shown to possess superior convergence properties, and its effectiveness is illustrated with an inverted pendulum example
Keywords :
Newton method; boundary-value problems; continuous time systems; convergence of numerical methods; finite difference methods; nonlinear control systems; pendulums; Picard methods; boundary-value problems; continuous-time nonlinear systems; convergence properties; damped Newton method; finite-difference methods; inverted pendulum; nonminimum-phase systems; output tracking; stable inversion; Convergence; Difference equations; Discrete Fourier transforms; Finite difference methods; Interpolation; Nonlinear systems; Relaxation methods; Trajectory;
fLanguage :
English
Journal_Title :
Automatic Control, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9286
Type :
jour
DOI :
10.1109/9.989157
Filename :
989157
Link To Document :
بازگشت