Title :
High-frequency rapid B-mode ultrasound imaging for real-time monitoring of lesion formation and gas body activity during high-intensity focused ultrasound ablation
Author :
Gudur, Madhu ; Kumon, Ronald ; Zhou, Yangzhong ; Deng, Cheri
Author_Institution :
Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI
fDate :
8/1/2012 12:00:00 AM
Abstract :
The goal of this study was to examine the ability of high-frame-rate, high-resolution imaging to monitor tissue necrosis and gas-body activities formed during high-intensity focused ultrasound (HIFU) application. Ex vivo porcine cardiac tissue specimens (n = 24) were treated with HIFU exposure (4.33 MHz, 77 to 130 Hz pulse repetition frequency (PRF), 25 to 50% duty cycle, 0.2 to 1 s, 2600 W/cm2). RF data from Bmode ultrasound imaging were obtained before, during, and after HIFU exposure at a frame rate ranging from 77 to 130 Hz using an ultrasound imaging system with a center frequency of 55 MHz. The time history of changes in the integrated backscatter (IBS), calibrated spectral parameters, and echo-decorrelation parameters of the RF data were assessed for lesion identification by comparison against gross sections. Temporal maximum IBS with +12 dB threshold achieved the best identification with a receiver-operating characteristic (ROC) curve area of 0.96. Frame-to-frame echo decorrelation identified and tracked transient gas-body activities. Macroscopic (millimetersized) cavities formed when the estimated initial expansion rate of gas bodies (rate of expansion in lateral-to-beam direction) crossed 0.8 mm/s. Together, these assessments provide a method for monitoring spatiotemporal evolution of lesion and gas-body activity and for predicting macroscopic cavity formation.
Keywords :
Acoustics; Cavity resonators; Imaging; Lesions; Monitoring; Radio frequency; Ultrasonic imaging; Animals; Echocardiography; Gases; High-Intensity Focused Ultrasound Ablation; Image Processing, Computer-Assisted; Myocardium; Necrosis; ROC Curve; Swine; Transducers;
Journal_Title :
Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on
DOI :
10.1109/TUFFC.2012.2374