Title :
Pipelined data parallel algorithms-I: concept and modeling
Author :
King, Chung-Ta ; Chou, Wen-Hwa ; Ni, Lionel M.
Author_Institution :
Dept. of Comput. & Inf. Sci., New Jersey Inst. of Technol., Newark, NJ, USA
fDate :
10/1/1990 12:00:00 AM
Abstract :
The basic concept of pipelined data-parallel algorithms is introduced by contrasting the algorithms with other styles of computation and by a simple example (a pipeline image distance transformation algorithm). Pipelined data-parallel algorithms are a class of algorithms which use pipelined operations and data level partitioning to achieve parallelism. Applications which involve data parallelism and recurrence relations are good candidates for this kind of algorithm. The computations are ideal for distributed-memory multicomputers. By controlling the granularity through data partitioning and overlapping the operations through pipelining, it is possible to achieve a balanced computation on multicomputers. An analytic model is presented for modeling pipelined data-parallel computation on multicomputers. The model uses timed Petri nets to describe data pipelining operations. As a case study, the model is applied to a pipelined matrix multiplication algorithm. Predicted results match closely with the measured performance on a 64-node NCUBE hypercube multicomputer
Keywords :
parallel algorithms; Petri nets; data level partitioning; data parallelism; pipelined data-parallel algorithms; pipelined operations; Algorithm design and analysis; Computer science; Concurrent computing; Distributed computing; Parallel algorithms; Parallel processing; Partitioning algorithms; Petri nets; Pipeline processing; Signal processing algorithms;
Journal_Title :
Parallel and Distributed Systems, IEEE Transactions on