DocumentCode :
1264531
Title :
Comparison of discrete wavelet and Fourier transforms for ECG beat classification
Author :
Dokur, Z. ; Ölmez, T. ; Yazgan, E.
Author_Institution :
Dept. of Electron. & Commun. Eng., Istanbul Tech. Univ., Turkey
Volume :
35
Issue :
18
fYear :
1999
fDate :
9/2/1999 12:00:00 AM
Firstpage :
1502
Lastpage :
1504
Abstract :
Two feature extraction methods, Fourier and wavelet analyses for ECG beat classification, are comparatively investigated. ECG features are searched by dynamic programming according to the divergence values. 10 types of ECG beat from an MTT-BIH database are classified with a success of 97% using a restricted Coulomb energy neural network trained by genetic algorithms
Keywords :
discrete Fourier transforms; discrete wavelet transforms; dynamic programming; electrocardiography; feature extraction; genetic algorithms; medical signal processing; neural nets; signal classification; Coulomb energy neural network; ECG beat classification; MTT-BIH database; discrete Fourier transform; discrete wavelet transform; dynamic programming; feature extraction; genetic algorithm;
fLanguage :
English
Journal_Title :
Electronics Letters
Publisher :
iet
ISSN :
0013-5194
Type :
jour
DOI :
10.1049/el:19991095
Filename :
802761
Link To Document :
بازگشت