Title :
Optimal synchronization of chaotic systems in noise
Author :
Zhu, Zhiwen ; Leung, Henry ; Ding, Zhen
Author_Institution :
Commun. Res. Lab., McMaster Univ., Hamilton, Ont., Canada
fDate :
11/1/1999 12:00:00 AM
Abstract :
Optimal synchronization of two identical chaotic systems coupled in a drive/response manner is considered in the paper. We derive a relationship between the mean square synchronization error and the coupling parameters in the presence of noise. By minimizing the mean square synchronization error with respect to the coupling parameters, an optimal synchronization, which minimizes the synchronization error between the drive and response systems, can be achieved. It is shown that the optimal coupling parameters depend on both the global and local Lyapunov exponents of the chaotic drive system. However, they are independent of the noise power. We apply this approach to design optimal synchronization for various chaotic systems. The optimal design is then applied to chaotic communication and it can recover the information signal efficiently. Simulations show that our theoretical results are in good agreement with the numerical analysis
Keywords :
Lyapunov methods; chaos; information theory; synchronisation; chaotic communication; chaotic systems; coupling parameters; drive/response coupling; global Lyapunov exponents; information signal; local Lyapunov exponents; mean square synchronization error; optimal synchronization; Analytical models; Chaos; Chaotic communication; Communication systems; Numerical analysis; Privacy; Signal design; Spread spectrum communication; Stability; Sufficient conditions;
Journal_Title :
Circuits and Systems I: Fundamental Theory and Applications, IEEE Transactions on