Title :
Electrochemically Assisted Maskless Selective Removal of Metal Layers for Three-Dimensional Micromachined SOI RF MEMS Transmission Lines and Devices
Author :
Sterner, Mikael ; Roxhed, Niclas ; Stemme, Göran ; Oberhammer, Joachim
Author_Institution :
Microsyst. Technol. Lab., R. Inst. of Technol. (KTH), Stockholm, Sweden
Abstract :
This paper presents a novel electrochemically assisted wet-etching method for maskless selective removal of metal layers. This method has been developed as the key process step for enabling the fabrication of low-loss 3-D micromachined silicon-on-insulator-based radio-frequency microelectromechanical systems transmission line components, consisting of a silicon core in the device layer covered by a gold metallization layer. For this application, the full-wafer sputtered metallization layer must be locally removed on the handle layer to guarantee for a well-defined and low-loss coplanar-waveguide propagation mode in the slots of the transmission line. It is not possible to use conventional photolithography or shadow masking. Gold areas to be etched are biased by a 1.2-V potential difference to a saturated calomel reference electrode in a NaCl(aq) solution. The measured etch rate of the proposed local electrochemically biased etching process is 520 nm/min, and no detectable etching was observed on unbiased areas even after a 1-h etch. The suitability of different adhesion layers has been investigated, and Ti-based adhesion layers were found to result in the highest yield. The new etching method has been successfully applied for the fabrication of transmission lines with integrated microswitches, lowering the insertion loss of the waveguide at 10 GHz from 1.3 to 0.3 dB/mm. The issue of unwanted thin metallic connections caused by secondary deposition during sputtering is discussed but found not to significantly affect the process yield. Finally, local removal of gold on isolated features even within the device layer is presented for locally removing the metallization on stoppers of laterally moving electrostatic actuators, to drastically reduce the mechanical wear on stopper tips.
Keywords :
adhesion; coplanar transmission lines; coplanar waveguides; electrochemistry; electrostatic actuators; elemental semiconductors; etching; gold; metallic thin films; metallisation; microactuators; micromachining; micromechanical devices; microswitches; microwave switches; silicon; silicon-on-insulator; sputtered coatings; wear; 3D micromachined transmission line components; RF MEMS; SOI; Si; adhesion layers; electrochemically assisted wet-etching; etch rate; frequency 10 GHz; full-wafer sputtered metallization layer; gold metallization layer; insertion loss; integrated microswitches; laterally moving electrostatic actuators; low-loss coplanar-waveguide propagation mode; low-loss transmission line components; maskless selective metal layer removal; mechanical wear; radio-frequency microelectromechanical systems; saturated calomel reference electrode; silicon core; silicon-on-insulator; stopper tips; transmission line slots; voltage 1.2 V; Etching; Gold; Power transmission lines; Radio frequency; Substrates; Transmission line measurements; Coplanar waveguide (CPW); radio-frequency (RF) microelectromechanical systems (MEMS); transmission lines;
Journal_Title :
Microelectromechanical Systems, Journal of
DOI :
10.1109/JMEMS.2011.2159100