Title :
Control Flow-Based Malware VariantDetection
Author :
Cesare, Silvio ; Yang Xiang ; Wanlei Zhou
Author_Institution :
Sch. of Inf. Technol., Deakin Univ., Burwood, VIC, Australia
Abstract :
Static detection of malware variants plays an important role in system security and control flow has been shown as an effective characteristic that represents polymorphic malware. In our research, we propose a similarity search of malware to detect these variants using novel distance metrics. We describe a malware signature by the set of control flowgraphs the malware contains. We use a distance metric based on the distance between feature vectors of string-based signatures. The feature vector is a decomposition of the set of graphs into either fixed size k-subgraphs, or q-gram strings of the high-level source after decompilation. We use this distance metric to perform pre-filtering. We also propose a more effective but less computationally efficient distance metric based on the minimum matching distance. The minimum matching distance uses the string edit distances between programs´ decompiled flowgraphs, and the linear sum assignment problem to construct a minimum sum weight matching between two sets of graphs. We implement the distance metrics in a complete malware variant detection system. The evaluation shows that our approach is highly effective in terms of a limited false positive rate and our system detects more malware variants when compared to the detection rates of other algorithms.
Keywords :
digital signatures; graph theory; invasive software; computationally efficient distance metric; control flow-based malware variant detection; control flowgraphs; decompiled flowgraphs; fixed size k-subgraphs; linear sum assignment problem; malware signature; minimum matching distance; minimum sum weight matching; polymorphic malware; q-gram strings; static detection; string-based signatures; system security; Databases; Feature extraction; Flow graphs; Malware; Measurement; Software; Vectors; Computer security; control flow; decompilation; malware classification; static analysis; structuring;
Journal_Title :
Dependable and Secure Computing, IEEE Transactions on
DOI :
10.1109/TDSC.2013.40