• DocumentCode
    1267480
  • Title

    Nonparametric Cepstrum Estimation via Optimal Risk Smoothing

  • Author

    Lai, Randy C S ; Lee, Thomas C M ; Wong, Raymond K W ; Yao, Fang

  • Author_Institution
    Dept. of Stat., Chinese Univ. of Hong Kong, Shatin, China
  • Volume
    58
  • Issue
    3
  • fYear
    2010
  • fDate
    3/1/2010 12:00:00 AM
  • Firstpage
    1507
  • Lastpage
    1514
  • Abstract
    This paper proposes a new cepstrum estimation procedure that is capable of producing smoother and improved cepstrum estimates without the use of any parametric modeling. This procedure consists of two main steps: In the first step, it applies a so-called grid transformation to the empirical cepstral coefficients, while in the second step it nonparametrically smooths the transformed coefficients with local linear regression. The Stein´s unbiased risk estimation (SURE) approach is adopted to select both the extent of the grid transformation and the amount of smoothing. It is shown that the use of this SURE selection method for the current problem is asymptotically optimal in a well-defined sense. Lastly, the good practical performance of the new cepstrum estimation procedure is demonstrated via numerical experiments.
  • Keywords
    regression analysis; risk analysis; smoothing methods; Stein unbiased risk estimation; cepstrum estimation procedure; empirical cepstral coefficients; grid transformation; nonparametric cepstrum estimation; optimal risk smoothing; parametric modeling; Bandwidth selection; Stein´s unbiased risk estimation (SURE); grid transformation; local linear regression; thresholding;
  • fLanguage
    English
  • Journal_Title
    Signal Processing, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    1053-587X
  • Type

    jour

  • DOI
    10.1109/TSP.2009.2036067
  • Filename
    5313955