Title :
Dynamically adaptable m-best 2-D assignment algorithm and multilevel parallelization
Author :
Popp, Robert L. ; Pattipati, Krishna R. ; Bar-Shalom, Yaakov
Author_Institution :
Inf. Technol., Alphatech Inc., Burlington, MA, USA
fDate :
10/1/1999 12:00:00 AM
Abstract :
In recent years, there has been considerable interest within the tracking community in an approach to data association based on the m-best two-dimensional (2D) assignment algorithm. Much of the interest has been spurred by its ability to provide various efficient data association solutions, including joint probabilistic data association (JPDA) and multiple hypothesis tracking (MHT). The focus of this work is to describe several recent improvements to the m-best 2D assignment algorithm. One improvement is to utilize a nonintrusive 2D assignment algorithm switching mechanism, based on a problem sparsity threshold. Dynamic switching between two different 2D assignment algorithms, highly suited for sparse and dense problems, respectively, enables more efficient solutions to the numerous 2D assignment problems generated in the m-best 2D assignment framework. Another improvement is to utilize a multilevel parallelization enabling many independent and highly parallelizable tasks to be executed concurrently, including 1) solving the multiple 2D assignment problems via a parallelization of the m-best partitioning task, and 2) calculating the numerous gating tests, state estimates, covariance calculations, and likelihood function evaluations (used as cost coefficients in the 2D assignment problem) via a parallelization of the data association interface task. Using both simulated data and an air traffic surveillance (ATS) problem based on data from two Federal Aviation Administration (FAA) air traffic control radars, we demonstrate that efficient solutions to the data association problem are obtainable using our improvements in the m-best 2D assignment algorithm
Keywords :
air traffic control; covariance analysis; radar applications; state estimation; target tracking; air traffic control radars; cost coefficients; covariance calculations; dynamically adaptable m-best 2D assignment algorithm; gating tests; joint probabilistic data association; likelihood function evaluations; multilevel parallelization; multiple hypothesis tracking; nonintrusive 2D assignment algorithm switching mechanism; problem sparsity threshold; state estimates; tracking; Air traffic control; Cost function; FAA; Military computing; Radar tracking; State estimation; Surveillance; Target tracking; Testing; Two dimensional displays;
Journal_Title :
Aerospace and Electronic Systems, IEEE Transactions on