Title :
State estimation using an approximate reduced statistics algorithm
Author :
Iltis, Ronald A.
Author_Institution :
California Univ., Santa Barbara, CA, USA
fDate :
10/1/1999 12:00:00 AM
Abstract :
The problem of state estimation using nonlinear additive Gaussian noise measurements is addressed. A geometric model for the posterior state density is assumed based on a multidimensional Haar basis representation. An approximate reduced statistics (ARS) algorithm, suggested by the parameter estimator of Kulhavy is then developed, using successive minimization of relative entropy between model densities and an approximate posterior density. The state estimator thus derived is applied to a bearings-only target tracking problem in a multiple sensor scenario
Keywords :
Gaussian noise; Haar transforms; entropy; parameter estimation; state estimation; target tracking; Kulhavy estimator; geometric model; model densities; multidimensional Haar basis representation; nonlinear additive Gaussian noise measurements; parameter estimator; posterior state density; reduced statistics algorithm; relative entropy; state estimation; successive minimization; target tracking problem; Additive noise; Entropy; Gaussian noise; Minimization methods; Multidimensional systems; Noise measurement; Parameter estimation; Solid modeling; State estimation; Statistics;
Journal_Title :
Aerospace and Electronic Systems, IEEE Transactions on