DocumentCode :
1272602
Title :
A computer-aided detection of EEG seizures in infants: a singular-spectrum approach and performance comparison
Author :
Celka, Patrick ; Colditz, Paul
Author_Institution :
Signal Process. Res. Centre, Queensland Univ. of Technol., Brisbane, Qld., Australia
Volume :
49
Issue :
5
fYear :
2002
fDate :
5/1/2002 12:00:00 AM
Firstpage :
455
Lastpage :
462
Abstract :
Presents a scalp electroencephalogram (EEG) seizure detection scheme based on singular spectrum analysis (SSA) and Rissanen minimum description length (MDL) model-order selection (SSA-MDL). Preprocessing of the signals allows for the drastic reduction of the number of false alarms. Statistical performance comparison with seizure detection schemes of Gotman et al. (1997) and Liu et al. (1992) is performed on both synthetic data and real EEG seizures. Monte Carlo simulations based on synthetic infant EEG seizure data reveals some detection drawbacks on a large variety of seizure waveforms. Detection using both Monte Carlo and four real infant scalp EEG signals shows the superiority of the SSA-MDL method with an average good detection rate of >93% and false detection rate <4%.
Keywords :
Monte Carlo methods; diseases; electroencephalography; medical signal detection; medical signal processing; paediatrics; spectral analysis; statistical analysis; EEG seizures; Monte Carlo simulations; Rissanen minimum description length model-order selection; SSA-MDL method; average good detection rate; computer-aided detection; detection drawbacks; false alarms; false detection rate; four real infant scalp EEG signals; infants; performance comparison; real EEG seizures; scalp electroencephalogram; seizure waveforms; signal preprocessing; singular spectrum analysis; statistical performance; synthetic data; Australia; Autocorrelation; Brain modeling; Electroencephalography; Event detection; Monte Carlo methods; Pediatrics; Performance analysis; Scalp; Signal processing; Computer Simulation; Diagnosis, Computer-Assisted; Electroencephalography; Humans; Infant; Models, Neurological; Monte Carlo Method; Seizures; Signal Processing, Computer-Assisted; Spectrum Analysis; Stochastic Processes;
fLanguage :
English
Journal_Title :
Biomedical Engineering, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9294
Type :
jour
DOI :
10.1109/10.995684
Filename :
995684
Link To Document :
بازگشت