DocumentCode :
1273726
Title :
Dynamic estimation of number of clusters in data sets
Author :
Boudraa, A.O.
Author_Institution :
Univ. de Paris-Nord, Villetaneuse, France
Volume :
35
Issue :
19
fYear :
1999
fDate :
9/16/1999 12:00:00 AM
Firstpage :
1606
Lastpage :
1608
Abstract :
A new method for estimating during clustering the number of clusters in data sets is proposed. The cluster validity index, Bcrit, takes the homogeneity in each cluster into account and is connected to the geometrical properties of the data set. Bcrit represents the combination of two validity indices. Comparisons between Bcrit and six cluster validity indices, conducted on real data sets, are presented
Keywords :
data compression; pattern clustering; unsupervised learning; cluster validity index; clusters; data sets; dynamic estimation; geometrical properties; homogeneity; validity indices;
fLanguage :
English
Journal_Title :
Electronics Letters
Publisher :
iet
ISSN :
0013-5194
Type :
jour
DOI :
10.1049/el:19991151
Filename :
807011
Link To Document :
بازگشت