DocumentCode :
1274566
Title :
A derivation of the Gohberg-Semencul relation [signal analysis]
Author :
Cernuschi-Frias, Bruno
Author_Institution :
Fac. de Ingenieria, Buenos Aires Univ., Argentina
Volume :
39
Issue :
1
fYear :
1991
fDate :
1/1/1991 12:00:00 AM
Firstpage :
190
Lastpage :
192
Abstract :
A simple proof of the Gohberg-Semencul decomposition of the inverse of the correlation matrix of an autoregressive (AR) process is given. The proof is based on the Cholesky decomposition and the centrosymmetric property of symmetric Toeplitz matrices. The Gohberg-Semencul relation is derived in a simple way by doubling the size, but not the order, of the AR process
Keywords :
correlation theory; matrix algebra; signal processing; Cholesky decomposition; Gohberg-Semencul relation; autoregressive process; centrosymmetric property; correlation matrix; signal analysis; symmetric Toeplitz matrices; Delay effects; Equations; Fourier series; Frequency; Matrix decomposition; Sampling methods; Signal analysis; Symmetric matrices; Time measurement; Writing;
fLanguage :
English
Journal_Title :
Signal Processing, IEEE Transactions on
Publisher :
ieee
ISSN :
1053-587X
Type :
jour
DOI :
10.1109/78.80778
Filename :
80778
Link To Document :
بازگشت