Title :
Common-Mode Suppression in Microstrip Differential Lines by Means of Complementary Split Ring Resonators: Theory and Applications
Author :
Naqui, Jordi ; Fernández-Prieto, Armando ; Durán-Sindreu, Miguel ; Mesa, Francisco ; Martel, Jesús ; Medina, Francisco ; Martín, Ferran
Author_Institution :
Dept. d´´Eng. Electron., Univ. Autonoma de Barcelona, Bellaterra, Spain
Abstract :
This paper is focused on the application of complementary split-ring resonators (CSRRs) to the suppression of the common (even) mode in microstrip differential transmission lines. By periodically and symmetrically etching CSRRs in the ground plane of microstrip differential lines, the common mode can be efficiently suppressed over a wide band whereas the differential signals are not affected. Throughout the paper, we present and discuss the principle for the selective common-mode suppression, the circuit model of the structure (including the models under even- and odd-mode excitation), the strategies for bandwidth enhancement of the rejected common mode, and a methodology for common-mode filter design. On the basis of the dispersion relation for the common mode, it is shown that the maximum achievable rejection bandwidth can be estimated. Finally, theory is validated by designing and measuring a differential line and a balanced bandpass filter with common-mode suppression, where double-slit CSRRs (DS-CSRRs) are used in order to enhance the common-mode rejection bandwidth. Due to the presence of DS-CSRRs, the balanced filter exhibits more than 40 dB of common-mode rejection within a 34% bandwidth around the filter pass band.
Keywords :
band-pass filters; etching; microstrip lines; resonator filters; transmission lines; DS-CSRR; balanced bandpass filter; bandwidth enhancement; circuit model; common-mode filter design; common-mode suppression; complementary split ring resonators; differential signals; dispersion relation; double-slit CSRR; even-mode excitation; maximum achievable rejection bandwidth; microstrip differential transmission lines; odd-mode excitation; periodically etching; symmetrically etching; Bandwidth; Couplings; Dispersion; Equivalent circuits; Integrated circuit modeling; Microstrip; Resonant frequency; Complementary split-ring resonator (CSRR); differential transmission lines; metamaterial-inspired lines; split-ring resonator (SRR);
Journal_Title :
Microwave Theory and Techniques, IEEE Transactions on
DOI :
10.1109/TMTT.2012.2209675