Title :
Compound Gauss-Markov random fields for image estimation
Author :
Jeng, Fure-Ching ; Woods, John W.
Author_Institution :
Bellcore Morristown, NH, USA
fDate :
3/1/1991 12:00:00 AM
Abstract :
Algorithms for obtaining approximations to statistically optimal estimates for images modeled as compound Gauss-Markov random fields are discussed. The authors consider both the maximum a posteriori probability (MAP) estimate and the minimum mean-squared error (MMSE) estimate for image estimation and image restoration. Compound image models consist of several submodels having different characteristics along with an underlying structure model which govern transitions between these image submodels. Two different compound random field models are employed, the doubly stochastic Gaussian (DSG) random field and a compound Gauss-Markov (CGM) random field. The authors present MAP estimators for DSG and CGM random fields using simulated annealing. A fast-converging algorithm called deterministic relaxation, which, however, converges to only a locally optimal MAP estimate, is also presented as an alternative for reducing computational loading on sequential machines. For comparison purposes, the authors include results on the fixed-lag smoothing MMSE estimator for the DSG field and its suboptimal M-algorithm approximation
Keywords :
Markov processes; computerised picture processing; parameter estimation; MAP estimate; MMSE estimate; compound Gauss-Markov random fields; deterministic relaxation; doubly stochastic Gaussian random fields; fast-converging algorithm; image estimation; image restoration; maximum a posteriori probability; minimum mean-squared error; parameter estimation; statistically optimal estimates; Computational modeling; Gaussian approximation; Gaussian processes; Image converters; Image restoration; Probability; Simulated annealing; Smoothing methods; Stochastic processes; User-generated content;
Journal_Title :
Signal Processing, IEEE Transactions on