Title :
On the Effect of Body Capacitance to Ground in Tetrapolar Bioimpedance Measurements
Author :
Aliau-Bonet, Carles ; Pallas-Areny, R.
Author_Institution :
BarcelonaTech (UPC), Univ. Politec. de Catalunya, Barcelona, Spain
Abstract :
Tetrapolar bioimpedance measurements on subjects have long been suspected of being affected by stray capacitance between the subjects´ body and ground. This paper provides a circuit model to analyze that effect in the frequency range from 100 Hz to 1 MHz in order to identify the relevant parameters when impedance is measured by applying a voltage and measuring both the resulting current and the potential difference between two points on the surface of the volume conductor. The proposed model includes the impedance of each electrode and the input impedance of the differential voltage amplifier. When common values for the circuit parameters are assumed, the simplified model predicts: 1) a frequency-independent gain (scale factor) error; 2) inductive artifacts, that is, the measured impedance increases with increasing frequency and may include positive angle phases; and 3) resonance that can affect well below 1 MHz. In addition to the stray capacitance to ground, relevant parameters that determine those errors are the capacitance of the “low-current” electrode and the input capacitance of the differential voltage amplifier. Experimental results confirm those theoretical predictions and show effects from several additional resonances above 1 MHz that also depend on body capacitance to ground.
Keywords :
amplifiers; bioelectric phenomena; biomedical electrodes; biomedical measurement; electric impedance measurement; body capacitance effect; circuit model; circuit parameters; differential voltage amplifier; frequency 100 Hz to 1 MHz; input capacitance; input impedance; low-current electrode; model frequency-independent gain inductive artifacts; positive angle phases; stray capacitance; surface volume conductor; tetrapolar bioimpedance measurements; Capacitance; Capacitance measurement; Current measurement; Electrodes; Frequency measurement; Impedance; Impedance measurement; Bioimpedance measurement; electrode impe-dance; four-electrode measurements, parasitic capacitance; Electric Capacitance; Electric Impedance; Electrodes; Humans; Models, Biological; Signal Processing, Computer-Assisted;
Journal_Title :
Biomedical Engineering, IEEE Transactions on
DOI :
10.1109/TBME.2012.2216880