Title :
Automatic Power-Sharing Modification of
/
Droop Controllers in Low-Voltage Resistive Microgri
Author :
Vandoorn, Tine L. ; De Kooning, Jeroen D M ; Meersman, Bart ; Guerrero, Josep M. ; Vandevelde, Lieven
Author_Institution :
Dept. of Electr. Energy, Syst. & Autom., Ghent Univ., Ghent, Belgium
Abstract :
Microgrids are receiving an increasing interest to integrate the growing share of distributed-generation (DG) units in the electrical network. For the islanded operation of the microgrid, several control strategies for the primary control have been developed to ensure stable microgrid operation. In low-voltage (LV) microgrids, active power/voltage (P/V) droop controllers are gaining attention as they take the resistive nature of the network lines and the lack of directly coupled rotating inertia into account. However, a problem often cited with these droop controllers is that the grid voltage is not a global parameter. This can influence the power sharing between different units. In this paper, it is investigated whether this is actually a disadvantage of the control strategy. It is shown that with P/V droop control, the DG units that are located electrically far from the load centers automatically deliver a lower share of the power. This automatic power-sharing modification can lead to decreased line losses; therefore, there is overall better efficiency compared to the methods that focus on perfect power sharing. In this paper, the P/V and P/f droop control strategies are compared with respect to this power-sharing modification and the line losses.
Keywords :
distributed power generation; frequency control; power control; power generation control; voltage control; DG units; LV microgrids; P-V droop controllers; P-f droop control strategy; active power-voltage droop controllers; automatic power-sharing modification; directly coupled rotating inertia; distributed-generation unit; electrical network; line losses; low-voltage resistive microgrids; network lines; power-frequency droop control strategy; Couplings; Generators; Impedance; Reactive power; Voltage control; Distributed generation (DG); droop controllers; microgrid; power system losses;
Journal_Title :
Power Delivery, IEEE Transactions on
DOI :
10.1109/TPWRD.2012.2212919