DocumentCode :
1284402
Title :
Organometallic vapor phase epitaxy of high-performance strained-layer InGaAs-AlGaAs diode lasers
Author :
Wang, C.A. ; Choi, Hong K.
Author_Institution :
MIT Lincoln Lab., Lexington, MA, USA
Volume :
27
Issue :
3
fYear :
1991
fDate :
3/1/1991 12:00:00 AM
Firstpage :
681
Lastpage :
686
Abstract :
Graded-index separate-confinement heterostructure single-quantum-well lasers incorporating a strained InxGa1-xAs active layer, with x⩽0.25, and AlGaAs confining layers have been grown on GaAs substrates by low-pressure organometallic vapor phase epitaxy. The emission wavelength increases from 0.85 μm for x=0 to 1.03 μm for x=0.25. The growth of GaAs layers bounding the InGaAs active layer significantly improves laser performance. For devices with x =0.25 and a cavity length L of 500 μm, the pulsed threshold current density Jth is reduced from 550 A/cm2 for structures without bounding layers to 125 A/cm2 for structures with 10-nm-thick bounding layers, while the differential quantum efficiency ηd is increased from 46 to 80%
Keywords :
III-V semiconductors; aluminium compounds; gallium arsenide; indium compounds; semiconductor growth; semiconductor junction lasers; vapour phase epitaxial growth; 0.85 to 1.03 micron; 10 nm; 46 to 80 percent; 500 micron; AlGaAs confining layers; GRIN lasers; GaAs substrates; InGaAs-AlGaAs diode lasers; SQW lasers; bounding layers; cavity length; differential quantum efficiency; emission wavelength; laser performance; low-pressure organometallic vapor phase epitaxy; pulsed threshold current density; semiconductors; separate-confinement heterostructure single-quantum-well lasers; strained InxGa1-xAs active layer; Capacitive sensors; Diode lasers; Epitaxial growth; Gallium arsenide; Indium gallium arsenide; Lattices; Pump lasers; Semiconductor laser arrays; Semiconductor lasers; Substrates;
fLanguage :
English
Journal_Title :
Quantum Electronics, IEEE Journal of
Publisher :
ieee
ISSN :
0018-9197
Type :
jour
DOI :
10.1109/3.81377
Filename :
81377
Link To Document :
بازگشت