• DocumentCode
    1284423
  • Title

    Channel Estimation for Opportunistic Spectrum Access: Uniform and Random Sensing

  • Author

    Liang, Quanquan ; Liu, Mingyan ; Yuan, Dongfeng

  • Author_Institution
    University of Michigan, Ann Arbor
  • Volume
    11
  • Issue
    8
  • fYear
    2012
  • Firstpage
    1304
  • Lastpage
    1316
  • Abstract
    The knowledge of channel statistics can be very helpful in making sound opportunistic spectrum access decisions. It is therefore desirable to be able to efficiently and accurately estimate channel statistics. In this paper, we study the problem of optimally placing sensing/sampling times over a time window so as to get the best estimate of the parameters of an on-off renewal channel. We are particularly interested in a sparse sensing regime with a small number of samples relative to the time window size. Using Fisher information as a measure, we analytically derive the best and worst sensing sequences under a sparsity condition. We also present a way to derive the best/worst sequences without this condition using a dynamic programming approach. In both cases the worst turns out to be the uniform sensing sequence, where sensing times are evenly spaced within the window. Interestingly the best sequence is also uniform but with a much smaller sensing interval that requires a priori knowledge of the channel parameters. With these results we argue that without a priori knowledge, a robust sensing strategy should be a randomized strategy. We then compare different random schemes using a family of distributions generated by the circular beta ensemble, and propose an adaptive sensing scheme to effectively track time-varying channel parameters. We further discuss the applicability of compressive sensing in the context of this problem.
  • Keywords
    Channel estimation; Maximum likelihood estimation; Radio spectrum management; Wireless sensor networks; Fisher information; Spectrum sensing; channel estimation; random sensing; sparse sensing; uniform sensing.;
  • fLanguage
    English
  • Journal_Title
    Mobile Computing, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    1536-1233
  • Type

    jour

  • DOI
    10.1109/TMC.2011.150
  • Filename
    5963684