DocumentCode :
1285434
Title :
Impact of Millisecond Flash-Assisted Rapid Thermal Annealing on SiGe Heterostructure Channel pMOSFETs With a High-k/Metal Gate
Author :
Se-Hoon Lee ; Majhi, P. ; Ferrer, D.A. ; Pui-Yee Hung ; Huang, J. ; Oh, J. ; Wei-Yip Loh ; Sassman, B. ; Byoung-Gi Min ; Hsing-Huang Tseng ; Harris, R. ; Bersuker, G. ; Kirsch, P.D. ; Jammy, R. ; Banerjee, S.K.
Author_Institution :
Microelectron. Res. Center, Univ. of Texas at Austin, Austin, TX, USA
Volume :
58
Issue :
9
fYear :
2011
Firstpage :
2917
Lastpage :
2923
Abstract :
Preserving the integrity (e.g., Ge concentration, strain, and lattice perfection) of pseudomorphically grown silicon germanium (SiGe) heterostructure channels on Si substrates is one of the most critical factors in obtaining optimal pMOSFET performance from high hole mobility of strained SiGe. A millisecond Flash-assisted rapid thermal annealing (RTA) technique was applied to source/drain (S/D) dopant activation of high-Ge-concentration SiGe channel MOSFETs with a high-k/metal gate stack. Flash annealing of SiGe channel pMOSFETs is shown to be an effective way to preserve channel integrity while achieving a low S/D resistance. Excellent mobility and short-channel device performance are realized. In addition, as the concentration of Ge in the SiGe layer is increased, high B activation can be achieved with a lower peak temperature Flash anneal. As a result, the sheet resistance of the implanted p+ junction can be comparable with that of higher temperature Flash-annealed (or optimal spike-annealed) Si. Furthermore, minimizing Ge diffusion reduces performance variation (such as statistical threshold voltage variation), which may be caused by the introduction and/or growth of defects in the strained SiGe heterostructure channel. It is shown that high-performance SiGe channel pMOSFETs with high Ge concentrations and a scaled high- k/metal gate can be achieved by a millisecond Flash-assisted RTA technique while preventing undesirable effects in the SiGe channel, such as within-wafer statistical performance variation.
Keywords :
Ge-Si alloys; MOSFET; rapid thermal annealing; RTA technique; SiGe; heterostructure channel pMOSFET; high-k-metal gate; millisecond flash-assisted rapid thermal annealing; mobility device; short-channel device; source-drain dopant activation; Annealing; Logic gates; MOSFETs; Resistance; Silicon; Silicon germanium; Substrates; Dopant activation; heterostructure channel; millisecond Flash anneal; mobility; silicon germanium (SiGe); strain;
fLanguage :
English
Journal_Title :
Electron Devices, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9383
Type :
jour
DOI :
10.1109/TED.2011.2159862
Filename :
5966326
Link To Document :
بازگشت