DocumentCode :
1286408
Title :
Multisource Data Integration for Fire Risk Management: The Local Test of a Global Approach
Author :
Diagne, Malick ; Drame, Moussa ; Ferrão, Carlos ; Marchetti, Pier Giorgio ; Pinto, Salvatore ; Rivolta, Giancarlo
Author_Institution :
Centre de Suivi Ecologique, Dakar, Senegal
Volume :
7
Issue :
1
fYear :
2010
Firstpage :
93
Lastpage :
97
Abstract :
In this letter, we propose an algorithm to detect the presence of forest fires using data from both geostationary and polar-orbiting satellites. The very frequent acquisitions of the Spinning Enhanced Visible and Infrared Imager radiometer placed onboard the Meteosat Second Generation-9 satellite are used as main source for the algorithm, while the MEdium Resolution Imaging Spectrometer global vegetation index and the Advanced Along-Track Scanning Radiometer measurements are used to enhance the reliability of the detection. The problem is approached in a ??global?? way, providing the basis for an automated system that is not dependent on the local area properties. In cooperation with the Centre de Suivi E??cologique (Dakar, Senegal), the proposed algorithm was implemented in a ??Multisource Fire Risk Management System?? for the Senegal area, as briefly described in this letter. A field campaign of one week was carried out in order to perform a validation of the system´s detections, showing a good agreement with the fire coordinates measured on the ground. Furthermore, a consistency check was performed using data from the Moderate Resolution Imaging Spectroradiometer (MODIS) Rapid Response System, showing that more than 76% of high-confidence MODIS events are detected by the algorithm.
Keywords :
data acquisition; fires; radiometry; remote sensing; risk management; Infrared Imager radiometer; Kalman filtering; Moderate Resolution Imaging Spectroradiometer; Rapid Response System; Senegal; Spinning Enhanced Visible Imager radiometer; decision support systems; fire risk management; forest fires; geostationary satellite data; multisource data integration; polar-orbiting satellite data; remote sensing; risk analysis; time series; Decision support systems; Kalman filtering; fires; infrared measurements; remote sensing; risk analysis; time series; vegetation;
fLanguage :
English
Journal_Title :
Geoscience and Remote Sensing Letters, IEEE
Publisher :
ieee
ISSN :
1545-598X
Type :
jour
DOI :
10.1109/LGRS.2009.2023926
Filename :
5191033
Link To Document :
بازگشت