DocumentCode :
1287632
Title :
Novel approach to adjust the step size for closed-loop power control in wireless cellular code division multiple access systems under flat fading
Author :
Saghaei, Hamed ; Seyfe, Babak ; Bakhshi, Hamidreza ; Bayat, R.
Author_Institution :
Dept. of Electr. Eng., Shahed Univ., Tehran, Iran
Volume :
5
Issue :
11
fYear :
2011
Firstpage :
1469
Lastpage :
1483
Abstract :
In this article, we study the power control (PC) process in wireless cellular code division-multiple access systems under flat fading and propose a novel approach to find an optimum step size for closed-loop power control algorithms. In this approach, an optimum step size will be computed from a proposed function. This function depends on system parameters such as, the number of co-channel users, processing gain, the period of PC, Doppler frequency, channel attenuation and the order of diversity. Based on this computation, the mobile station (MS) adjusts its transmit power optimally to decrease interference for other co-channel users. Simulation results for different sets of system parameters show that the proposed algorithm decreases the bit error rate, the outage probability at the base station (BS), and increases the battery life of the MS compared with other values of the step size. The performance of the proposed algorithm is compared with the fixed-step-size power control algorithm and superiority of its performance is confirmed by simulation results. Moreover, the upper and lower bounds of the outage probability and the received signal-to-interference ratio for the proposed algorithm at the BS will be calculated.
Keywords :
cellular radio; code division multiple access; error statistics; fading channels; power control; telecommunication control; Doppler frequency; base station; bit error rate; channel attenuation; closed loop power control algorithm; closed-loop power control; cochannel user; fixed-step-size power control algorithm; flat fading; mobile station; optimum step size; outage probability; power control process; wireless cellular code division multiple access system;
fLanguage :
English
Journal_Title :
Communications, IET
Publisher :
iet
ISSN :
1751-8628
Type :
jour
DOI :
10.1049/iet-com.2010.0029
Filename :
5969636
Link To Document :
بازگشت