• DocumentCode
    128772
  • Title

    Synchronous generator incipient fault prediction based on SVM

  • Author

    Huang Cao ; Yuan Haiwen ; Tian Bo ; Wu Qicai ; Yuan Haibing ; Ling Mu

  • Author_Institution
    Sch. of Autom. Sci. & Electr. Eng., Beihang Univ., Beijing, China
  • fYear
    2014
  • fDate
    9-11 June 2014
  • Firstpage
    2115
  • Lastpage
    2118
  • Abstract
    Aiming at the lack of technology for generator incipient condition monitoring and fault prediction, proposed SVM(Support Vector Machine) is introduced to generator incipient fault prediction. This paper takes the parametric faults of synchronous generator as an example, selects the output voltage as a monitoring signal, and combines with SVM regression prediction algorithms to achieve synchronous generators incipient fault prediction.
  • Keywords
    fault diagnosis; power engineering computing; support vector machines; synchronous generators; SVM regression prediction algorithms; generator incipient condition monitoring; parametric faults; support vector machine; synchronous generator incipient fault prediction; Circuit faults; Inductance; Mathematical model; Support vector machines; Synchronous generators; Threshold voltage; SVM; Synchronous generator; fault prediction;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Industrial Electronics and Applications (ICIEA), 2014 IEEE 9th Conference on
  • Conference_Location
    Hangzhou
  • Print_ISBN
    978-1-4799-4316-6
  • Type

    conf

  • DOI
    10.1109/ICIEA.2014.6931520
  • Filename
    6931520