Title :
Linear discrete-time H∞-optimal tracking with preview
Author :
Cohen, Agnés ; Shaked, Uri
Author_Institution :
Fac. of Eng., Tel Aviv Univ., Israel
fDate :
2/1/1997 12:00:00 AM
Abstract :
The problem of finite-time H∞-tracking for linear, discrete, time-varying systems is considered. No a prior knowledge of the dynamics of the reference signal is assumed. A distinction between three cases is made, depending on whether the reference signal is perfectly known in advance, measured online, or previewed in a fixed interval of time ahead. The tracking problem is formulated as a game, where the controller plays against nature which may choose the initial condition or the system and any energy bounded driving disturbance and measurement noise inputs. Necessary and sufficient conditions are derived for the existence of saddle-point equilibrium solutions to the three different information structures of the reference, and the corresponding tracking controllers are derived
Keywords :
H∞ control; discrete time systems; dynamics; game theory; linear systems; predictive control; time-varying systems; tracking; H∞-optimal control; discrete-time systems; dynamics; game theory; linear systems; necessary condition; preview control; saddle-point equilibrium; sufficient condition; time-varying systems; tracking controllers; Control systems; Energy measurement; Game theory; H infinity control; Noise measurement; Optimal control; Sufficient conditions; Time measurement; Time varying systems; Trajectory;
Journal_Title :
Automatic Control, IEEE Transactions on