DocumentCode :
1291030
Title :
Improved error exponent for time-invariant and periodically time-variant convolutional codes
Author :
Shulman, Nadav ; Feder, Meir
Author_Institution :
Dept. of Electr. Eng.-Syst., Tel Aviv Univ., Israel
Volume :
46
Issue :
1
fYear :
2000
fDate :
1/1/2000 12:00:00 AM
Firstpage :
97
Lastpage :
103
Abstract :
An improved upper bound on the error probability (first error event) of time-invariant convolutional codes, and the resulting error exponent, is derived. The improved error bound depends on both the delay of the code K and its width (the number of symbols that enter the delay line in parallel) b. Determining the error exponent of time-invariant convolutional codes is an open problem. While the previously known bounds on the error probability of time-invariant codes led to the block-coding exponent, we obtain a better error exponent (strictly better for b>1). In the limit b→∞ our error exponent equals the Yudkin-Viterbi (1967, 1971, 1965) exponent derived for time-variant convolutional codes. These results are also used to derive an improved error exponent for periodically time-variant codes
Keywords :
block codes; convolutional codes; delays; error statistics; linear codes; random codes; Yudkin-Viterbi exponent; block-coding exponent; code delay; code width; delay line; error bound; error exponent; error probability; first error event; linear binary convolutional encoder; periodically time-variant convolutional codes; random binary block code; time-invariant convolutional codes; upper bound; Block codes; Communication systems; Convolutional codes; Delay lines; Error probability; Maximum likelihood decoding; Registers; Upper bound; Vectors; Viterbi algorithm;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/18.817511
Filename :
817511
Link To Document :
بازگشت