• DocumentCode
    1294094
  • Title

    Laser-Sintered \\hbox {TiO}_{2} Films for Dye Solar Cell Fabrication: An Electrical, Morphological, and Electron Lifetime Investigation

  • Author

    Mincuzzi, Girolamo ; Vesce, Luigi ; Liberatore, Massimiliano ; Reale, Andrea ; Carlo, Aldo Di ; Brown, Thomas M.

  • Author_Institution
    Dept. of Electron. Eng., Univ. of Rome Tor Vergata, Rome, Italy
  • Volume
    58
  • Issue
    9
  • fYear
    2011
  • Firstpage
    3179
  • Lastpage
    3188
  • Abstract
    We have carried out a systematic and combined I- V, electrochemical impedance spectroscopy (EIS), and scanning emission microscopy (SEM) investigation of dye solar cells (DSCs) fabricated with laser-sintered TiO2 photoanodes as a function of laser-integrated fluence Φ. We show that the electron lifetime τoc in the TiO2 film extracted from EIS spectra monotonically increases with laser sintering fluence both at constant illumination and, even more significantly, at constant photoinduced charge Qoc. The increase in τoc between the poorly sintered and the best laser-sintered devices is an order of magnitude at constant illumination (equivalent to the increase in device efficiency) and even greater at constant Qoc. A strong correlation between τoc and the cell electrical parameters is observed, although device efficiency peaks with Φ whereas τoc does not. The rise of τoc with Φ indicates improved electromechanical bonding between TiO2 nanoparticles due to the improved sintering carried out by the raster scanning laser process, as also confirmed by SEM images. The strong correlation between device performance and τoc indicates that laser processing may also have significant potential in many other device applications that require high-surface-area TiO2 coupled with good electronic transduction.
  • Keywords
    carrier lifetime; electrochemical electrodes; electrochemical impedance spectroscopy; laser sintering; nanofabrication; nanoparticles; scanning electron microscopy; solar cells; titanium compounds; EIS; SEM images; TiO2; dye solar cell fabrication; electrochemical impedance spectroscopy; electromechanical bonding; electron lifetime; laser scanning process; laser sintering; nanoparticles; photoanodes; scanning emission microscopy; Fabrication; Laser beams; Laser sintering; Lighting; Measurement by laser beam; Ovens; Substrates; $hbox{TiO}_{2}$ laser sintering; Dye solar cells (DSCs); electrochemical impedance spectroscopy (EIS); electron lifetime;
  • fLanguage
    English
  • Journal_Title
    Electron Devices, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0018-9383
  • Type

    jour

  • DOI
    10.1109/TED.2011.2160643
  • Filename
    5979153