DocumentCode :
1298508
Title :
Achieving Secret Communication for Fast Rayleigh Fading Channels
Author :
Li, Zang ; Yates, Roy ; Trappe, Wade
Author_Institution :
Dept. of Electr. & Comput. Eng., Rutgers Univ., North Brunswick, NJ, USA
Volume :
9
Issue :
9
fYear :
2010
fDate :
9/1/2010 12:00:00 AM
Firstpage :
2792
Lastpage :
2799
Abstract :
We consider a secret communication scenario where Alice wants to transmit secretly to Bob in presence of a passive eavesdropper Eve. The Alice-Bob channel is a fixed-SNR AWGN channel, while the Alice-Eve channel is a fast Rayleigh fading channel, with the channel states only known to Eve. Alice knows the statistics of Alice-Eve channel, but not the exact realizations. We investigate the achievable secrecy rates for this channel model with Gaussian signaling and discrete signaling. For Gaussian signaling, several transmission strategies according to the main channel´s relative channel gain are proposed and evaluated. For discrete signaling, achievable secrecy rates with Quadrature Amplitude Modulation (QAM) are evaluated. When Bob´s channel is much better than Eve´s channel, simple Gaussian signaling can perform close to the upper bound, and is better than the rate achieved with M-QAM. When Bob´s channel gain is on average worse than the eavesdropper´s average channel gain, positive secrecy rate can still be achieved for Gaussian signaling with artificial noise injection and a burst signaling strategy. Moreover, M-QAM can outperform Gaussian signaling. The key factor that enables secret communication in this case is that both M-QAM and artificial noise limit the leakage of information when Eve´s channel is unusually good.
Keywords :
AWGN channels; Rayleigh channels; quadrature amplitude modulation; AWGN channel; Alice-Bob channel; Alice-Eve channel; Gaussian signaling; artificial noise injection; burst signaling strategy; discrete signaling; fast Rayleigh fading channels; passive eavesdropper; quadrature amplitude modulation; secret communication; AWGN; Channel models; Fading; Quadrature amplitude modulation; Signal to noise ratio; Wireless communication; Security; secrecy rate; wireless communications;
fLanguage :
English
Journal_Title :
Wireless Communications, IEEE Transactions on
Publisher :
ieee
ISSN :
1536-1276
Type :
jour
DOI :
10.1109/TWC.2010.080210.090948
Filename :
5550916
Link To Document :
بازگشت