Title :
Maximum-likelihood classification for digital amplitude-phase modulations
Author :
Wei, Wen ; Mendel, Jerry M.
Author_Institution :
Signal & Image Process. Inst., Univ. of Southern California, Los Angeles, CA, USA
fDate :
2/1/2000 12:00:00 AM
Abstract :
We apply the maximum-likelihood (ML) method to the classification of digital quadrature modulations. We show that under an ideal situation, the I-Q domain data are sufficient statistics for modulation classification and obtain a generic formula for the error probability of a ML classifier. Our study of asymptotic performance shows that the ML classifier is capable of classifying any finite set of distinctive constellations with zero error rate when the number of available data symbols goes to infinity
Keywords :
amplitude modulation; error statistics; maximum likelihood detection; phase modulation; signal classification; I-Q domain data; ML classifier; PAM; PSK; QAM; asymptotic performance; constellations; data symbols; digital amplitude-phase modulation; digital quadrature modulation; error probability; generic formula; maximum-likelihood classification; modulation classification; phase-shift keying; pulse amplitude modulation; quadrature amplitude modulation; sufficient statistics; zero error rate; Amplitude modulation; Digital modulation; Error analysis; Maximum likelihood detection; Phase modulation; Probability; Pulse modulation; Quadrature amplitude modulation; Signal processing; Statistics;
Journal_Title :
Communications, IEEE Transactions on