Title :
Reconstruction of High-Resolution Tongue Volumes From MRI
Author :
Jonghye Woo ; Murano, E.Z. ; Stone, Maureen ; Prince, Jerry L.
Author_Institution :
Univ. of Maryland, Baltimore, MD, USA
Abstract :
Magnetic resonance images of the tongue have been used in both clinical studies and scientific research to reveal tongue structure. In order to extract different features of the tongue and its relation to the vocal tract, it is beneficial to acquire three orthogonal image volumes-e.g., axial, sagittal, and coronal volumes. In order to maintain both low noise and high visual detail and minimize the blurred effect due to involuntary motion artifacts, each set of images is acquired with an in-plane resolution that is much better than the through-plane resolution. As a result, any one dataset, by itself, is not ideal for automatic volumetric analyses such as segmentation, registration, and atlas building or even for visualization when oblique slices are required. This paper presents a method of superresolution volume reconstruction of the tongue that generates an isotropic image volume using the three orthogonal image volumes. The method uses preprocessing steps that include registration and intensity matching and a data combination approach with the edge-preserving property carried out by Markov random field optimization. The performance of the proposed method was demonstrated on 15 clinical datasets, preserving anatomical details and yielding superior results when compared with different reconstruction methods as visually and quantitatively assessed.
Keywords :
Markov processes; biological organs; biomedical MRI; feature extraction; image denoising; image matching; image registration; image resolution; image restoration; image segmentation; medical image processing; optimisation; MRI; Markov random field optimization; atlas building; automatic volumetric analysis; axial volumes; clinical study; coronal volumes; data combination approach; edge-preserving property; feature extraction; high-resolution tongue volumes; image deblurring; image reconstruction; image registration; image segmentation; in-plane resolution; intensity matching; involuntary motion artifacts; magnetic resonance imaging; oblique slice visualization; orthogonal image volumes; sagittal volumes; scientific research; superresolution volume reconstruction; through-plane resolution; tongue structure; vocal tract; Computational modeling; Image reconstruction; Magnetic resonance imaging; Muscles; Spatial resolution; Tongue; Human tongue; magnetic resonance imaging (MRI); superresolution volume reconstruction; Algorithms; Brain; Computer Simulation; Databases, Factual; Humans; Image Processing, Computer-Assisted; Magnetic Resonance Imaging; Markov Chains; Reproducibility of Results; Tongue; Tongue Neoplasms;
Journal_Title :
Biomedical Engineering, IEEE Transactions on
DOI :
10.1109/TBME.2012.2218246